Школьная энциклопедия. Закон сохранения энергии Виды механических сил

Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем:

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами.

Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Закон сохранения механической энергии связан с однородностью времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.

Существует еще один вид систем - диссипативные системы , в которых механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассеяния) энергии .

В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной.

Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга.

Закон сохранения и превращения энергии - фундаментальный закон природы , он справедлив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы , например, силы трения, полная механическая энергия системы не сохраняется . Однако при «исчезновении» механической энергии всегда возникает эквивалентное количество энергии другого вида.

14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

Суммирование производится по всем элементарным массам m, на которые разбивается тело.

В случае непрерывного распределения масс эта сумма сводится к интегралу: где интегрирование производится по всему объему тела.

Величина r в этом случае есть функция положения точки с координатами х, у, z. Момент инерции - величина аддитивная : момент инерции тела относительно некоторой оси равен сумме моментов инерции частей тела относительно той же оси.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера :

момент инерции тела J относительно произвольной оси равен моменту его инерции Jс относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

Примеры моментов инерции некоторых тел (тела считаются однородными, m - масса тела):

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку А;

р = mv - импульс материальной точки;

L - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к.

Модуль вектора момента импульса:

где а - угол между векторами r и р;

l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса r, с некоторой скоростью Vi. Скорость Vi и импульс mV перпендикулярны этому радиусу, т. е. радиус является плечом вектора . Поэтому момент импульса отдельной частицы равен:

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу получим, что момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость:

Полная механическая энергия замкнутой системы тел остается неизменной


Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.


В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 - это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Сведем вместе результаты, полученные в предыдущих параграфах. Рассмотрим систему, состоящую из N частиц с массами . Пусть частицы взаимодействуют друг с другом с силами , модули которых зависят только от расстояния между частицами. В предыдущем параграфе мы установили, что такие силы являются консервативными.

Это означает, что работа, совершаемая этими силами над частицами, определяется начальной и конечной конфигурациями системы. Предположим, что, кроме внутренних сил, на i-ю частицу действует внешняя консервативная сила и внешняя неконсервативная сила . Тогда уравнение движения i-й частицы будет иметь вид

Умножив i-e уравнение на и сложив вместе все N уравнений, получим:

Левая часть представляет собой приращение кинетической энергии системы:

(см. (19.3)). Из формул (23.14)-(23.19) следует, что первый член правой части равен убыли потенциальной энергии взаимодействия частиц:

Согласно (22.1) второй член в (24.2) равен убыли потенциальной энергии системы во внешнем поле консервативных сил:

Наконец, последний, член в (24.2) представляет собой работу неконсервативных внешних сил:

Приняв во внимание формулы (24.3)-(24.6), представим соотношение (24.2) следующим образом:

Величина

(24.8)

есть полная механическая энергия системы.

Если внешние неконсервативные силы, отсутствуют, правая часть формулы (24.7) будет равна нулю и, следовательно, полная энергия системы остается постоянной:

Таким образом, мы пришли к выводу, что полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной. В этом утверждении заключено существо одного из основных законов механики - закона сохранения механической энергии.

Для замкнутой системы, т. е. системы, на тела которой не действуют Никакие внешние силы, соотношение (24.9) имеет вид

В этом случае закон сохранения энергии формулируется следующим образом: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной.

Если в замкнутой системе, кроме консервативных, действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Рассматривая неконсервативные силы как внешние, можно в соответствии с (24.7) написать:

Проинтегрировав это соотношение, получим:

Закон сохранения энергии для системы невзаимодействующих частиц был сформулирован в § 22 (см. текст, следующий за формулой (22.14)).

Стиль